Correlation of sputter deposition parameters with current-voltage (I-V) characteristics in double-barrier memristive devices

F. Zahari1, F. Schlichting2, J. Strobel3, J. Cipo2, S. Dirkmann4, S. Gauter2, J. Trieschmann2, R. Marquardt1, L. Kienle3, T. Mussenbrock4, M. Ziegler5, H. Kersten2 and H. Kohlstedt1

1Nanoelectronics, Faculty of Engineering, Kiel University, Germany
2Plasma Technology, Department of Physics, Kiel University, Germany
3Synthesis and Real Structure, Faculty of Engineering, Kiel University, Germany
4Electrodynamics and Physical Electronics, Electrical Engineering and Information Science, BTU Cottbus-Senftenberg, Germany
5Department of Micro- and Nanoelectronic Systems, TU Ilmenau, Ilmenau, Germany
Neuromorphic computing

Select all images with bridges.

https://www.google.com/recaptcha
Neuromorphic computing

- Hardware realization of **bio-inspired systems** (neurons and synapses)
- **Fundamental differences to conventional computers:**
 - Representation of **information by relative values of analog signals**
 - **Co-localization of memory and computing** (avoid von Neumann bottleneck)
- **associative tasks** like pattern recognition

- **real-time**
- **energy efficient**
- **parallel**

C. Mead, Proceedings of the IEEE 78 (1990)
J. Yang et al., Nanotechnology 8 (2013)
A double-barrier memristive device (DBMD)

- Strong I-V non-linearity and asymmetry
- Self-rectifying
- Interface-based switching → analog
- Voltage threshold for switching
- No electro-forming

A double-barrier memristive device (DBMD)

Tunnel barrier

Al | Al₂O₃ | NbOₓ | Au

1.3 nm | 2.5 nm

Schottky barrier

Coupled mechanisms by ultra-thin solid state electrolyte
Unsupervised learning with DBMDs – mixed-signal implementation

Unsupervised learning with DBMDs – mixed-signal implementation

Pulse generating unit

Current measurement (I-to-V converter)

Voltmeter

Analog signals

Control signals

16x16 crossbar

Fabrication of DBMDs

• DC-magnetron sputtering

• Nb is sputtered in an Ar / O₂ gas mixture (poisoned mode) \(\rightarrow \) NbOₓ

• 100 mm targets and 100 mm wafers

➢ No homogeneous layers across one whole wafer \(\rightarrow \) variable \(I-V \) curves
Fabrication of DBMDs

• DC-magnetron sputtering

• Nb is sputtered in an Ar / O₂ gas mixture (poisoned mode) \(\rightarrow \) NbOₓ

• 100 mm targets and 100 mm wafers

➤ No homogeneous layers across one whole wafer \(\rightarrow \) variable I-V curves

➤ Unwanted for reliable (industrial) fabrication
Fabrication of DBMDs

- DC-magnetron sputtering
- Nb is sputtered in an Ar / O₂ gas mixture (poisoned mode) → NbOₓ
- 100 mm targets and 100 mm wafers
 - No homogeneous layers across one whole wafer → variable I-V curves
 - Unwanted for reliable (industrial) fabrication
 - Benefit: Impact of deposition conditions on the electric behavior of different devices of one and the same fabrication process can be investigated
 → correlation of deposition conditions with I-V characteristics
Fabrication of DBMDs

- DC-magnetron sputtering
- Nb is sputtered in an Ar / O₂ gas mixture (poisoned mode) → NbOₓ
- 100 mm targets and 100 mm wafers
 - No homogeneous layers across one whole wafer → variable I-V curves
 - Unwanted for reliable (industrial) fabrication
 - Benefit: Impact of deposition conditions on the electric behavior of different devices of one and the same fabrication process can be investigated
 → correlation of deposition conditions with I-V characteristics
 - Performance of neuromorphic systems crucial depend on the individual I-V characteristics
 → tailoring of I-V curves possible if impact of deposition parameters is understood
I-V characteristics of a whole 100 mm wafer

- **R @ +1.6 V**
 - Low to high color gradient

- **R @ -1.6 V**

- **Position on wafer (mm)**
 - Range from -40 to 40

- **Current density** $|J|$ vs. voltage V for three different sections (1, 2, 3)
 - Scales range from 10^{-16} to 10^{12} A/μm²

- **Current density** $|J|$ vs. voltage V for section 4
 - Scales range from 10^{-16} to 10^{-6} A/μm²
Measurement of plasma parameters during DC magnetron sputtering of NbO\textsubscript{x}

- Energy flux by heating of a floating copper plate

Voltage sweep on probe and measuring the current
- Electron temperature (T_e)
- Floating potential (Φ_{fl})
- Plasma potential (Φ_{pl})
- Ion Current
Measurement of plasma parameters during DC magnetron sputtering of NbO$_x$

- Energy flux by heating of a floating copper plate

Voltage sweep on probe and measuring the current
- Electron temperature (T_e)
- Floating potential (Φ_{fl})
- Plasma potential (Φ_{pl})
- Ion Current

plasma engineered devices
Correlations of plasma parameters and memristive behaviour
Correlations of plasma parameters and memristive behaviour

- Φ_{fi} resembles R for positive bias within +/- 25 mm

- No correlation for outer area, e.g. at +/- 30 mm
Correlations of plasma parameters and memristive behaviour

- Maxima of T_e at position of high resistive devices without memristive behaviour
- Center comparable to edge
Correlations of plasma parameters and memristive behaviour

- Maxima of T_e at position of high resistive devices without memristive behaviour
- Center comparable to edge
- Broadening of I-V curve
Correlations of plasma parameters and memristive behaviour

- Energy flux at substrate surface is important for film properties → density, stoichiometry, morphology etc.

- Superposition of several parameters leading to needed layer properties
Correlations of plasma parameters and memristive behaviour

- High energetic negative ions at race-track position

- Can influence electronic properties due to defect creation

→ e.g.: higher resistance of Al-doped ZnO

Sputtered from Zn target in Ar / O₂ atmosphere

Electron energy loss spectroscopy of O-K edge (EELS)
By transmission electron microscopy (TEM)

EELS of O-K edge
• NbO₂ or Nb₂O₅ in the center \rightarrow insulating oxidation states
• Suboxide at race-track position \rightarrow lower oxidation state (signal strength small) \rightarrow NbO is metallic conductor

Reference spectra: Bach, EELS investigations of stoichiometric niobium oxides and niobiumbased capacitors, PhD thesis, university of Karlsruhe
Kinetic Monte Carlo Simulations

- lumped element circuit model is consistently coupled with 3D kinetic Monte Carlo model for the ion transport
- **drift of charged point defects within the NbO}_x is the key factor for the resistive switching behavior** → oxygen (vacancies) **modify the local electronic interface states** → **change of resistance**

New simulations (T. Mussenbrock and S. Dirkmann):
- Higher defect concentration → “bigger” I-V hysteresis
Kinetic Monte Carlo Simulations

- lumped element circuit model is consistently coupled with 3D kinetic Monte Carlo model for the ion transport
- drift of charged point defects within the NbO$_x$ is the key factor for the resistive switching behavior → oxygen (vacancies) modify the local electronic interface states → change of resistance

New simulations (T. Mussenbrock and S. Dirkmann):

- Higher defect concentration → “bigger” I-V hysteresis

![Graph showing I-V characteristics with different defect concentrations.](image-url)
Thank you for your attention!

Financial support by the Deutsche Forschungsgemeinschaft through RU 2093 is gratefully acknowledged.